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Abstract. All Lie symmetries of the Burgers equation driven by an external random force are
found. Besides the generalized Galilean transformations, this equation is also invariant under
the time reparametrizations. It is shown that the Gaussian distribution of a pumping force is
not invariant under the symmetries and breaks them down leading to the non-trivial vacuum
(instanton). Integration over the volume of the symmetry groups provides the description of
fluctuations around the instanton and leads to an exactly solvable quantum mechanical problem.

1. Introduction

The statistical theory of turbulence was put forward by Kolmogorov in 1941 [1] and has
since been developed intensively. The cornerstone of although simple but suprisingly robust
Kolmogorov’s dimensional analysis is the assumption that in the fully developed turbulence
there is a range of scales where the velocity structure functions are universal, i.e. independent
of the cutoffs provided by the scales of energy pumping and dissipation. Much effort
has been made to understand whether there are fluctuation corrections to the mean field
scaling exponents, predicted by Kolmogorov, and whether these corrections depend on the
dissipation or pumping scale [2]. Nevertheless, the problem is still far from being solved.

Recently, the one-dimensional Burgers equation

ut + uux − νuxx = f (x, t) (1)

driven by the Gaussian random forcef (x, t) with the zero mean and covariance

〈f (x, t)f (x ′, t ′)〉 = κ(x − x ′)δ(t − t ′) (2)

has been in the focus of quite a number of studies. The reason is that this equation is the
simplest one that resembles the analytic structure of the Navier–Stokes equation and, at least
formally, is within the scope of applicability of the Kolmogorov’s arguments. Extensive
numerical simulations of this equation [3], although reproducing Kolmogorov’s scaling
exponents for the energy spectrum, and for the two-point velocity correlation function,
reveal strong intermittency for high-order moments of velocity differences.

By adopting the hypothesis of the existence of the operator product expansion in the limit
of small but non-zero viscosity,ν →+0, Polyakov [4] reduced the problem of calculation of
high-order moments to an exactly solvable quantum mechanics and qualitatively explained
the results of numerical simulations.

Another approach was based on the equivalence of the stochastic Burgers equation,
equations (1) and (2), with the Martin–Siggia–Rose field theory. Employing the saddle-point
approximation in the corresponding path integral, equation (14), Gurarie and Migdal [5]
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found the same generating functional of the velocity correlation functions as was predicted
by Polyakov. The classical solution that provides a minimum of the action was named the
‘instanton’.

The purpose of this letter is to show that the Burgers equation driven by an external
random force (1), possesses two infinite symmetry groups that are broken by the Gaussian
distribution of a pumping force (2), thus resulting in the instanton solution. The exact
integration over the volumes of the symmetry group corresponds to the description of
fluctuations around the instanton and leads finally to the Polyakov’s exactly solvable
quantum mechanics.

1.1. Martin–Siggia–Rose formalism

Let us first consider the functional Langevin equation of the general type

∂tu+ F(x, [u]) = f (x, t) (3)

wheref (x, t) is a functional Gaussian process with the covariance operatorK. The local
functionalF(x, [u]) completely characterizes the dynamics of the system.

Then, the Martin–Siggia–Rose formalism permits one to obtain a formal path integral
representation for the expectation values of the observablesO[u] in the stationary state
[6–10]

〈O[u]〉 =
∫
Df O[u]δ(∂tu+ F − f )e−(f,K−1f )/2

=
∫
DµDf O[u]δ(∂tu+ F − f )e−(µ,Kµ)/2+i(µ,f ) (4)

where we have introduced an auxiliary fieldµ to rewrite the Gaussian path integral over
the fieldf . Now, let us pass in this path integral from the integration over the force field
Df to the integration over the velocity fieldDu. Using theδ-function we obtain

〈O[u]〉 =
∫
DµDuO[u]J [u] exp(−S[u,µ]). (5)

Now, the action of the effective field theory can be written as

S[u,µ] = −i(µ, ∂tu+ F)+ 1
2(µ,Kµ). (6)

The functionalJ [u] is the Jacobian of the force-to-velocity transformation and is given by
the following expression:

J [u] = det

∥∥∥∥δfδu
∥∥∥∥ = det

∥∥∥∥∂t + δFδu
∥∥∥∥. (7)

Here, the variational derivativeδF/δu is determined by the usual equality

F(x, [u+ δu])− F(x, [u]) =
∫
δF(x, [u])

δu(y)
δu(y) dy. (8)

Formal calculation of this determinant leads to the result

J [u] = exp

(
θ(0)Tr

δF
δu

)
(9)

involving the ill defined quantityθ(0), whereθ(t) is the usual step function. To give a
meaning to this expression one can make use of the usual limiting procedure in which the
time interval(ti , tf ) is subdivided intoN equal subintervals each of duration1t , and the
differential relation inside is replaced by a difference one [10]. After taking the continuous
limit one findsθ(0) = 1/2.
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In the perturbative treatment of the path integral this Jacobian term is irrelevant because
it can always be absorbed by the proper redefinition of Green functions. Nevertheless,
performing manipulations with the path integral we should take care about this Jacobian
term. For the stochastic Burgers equation the local functionalF(x, [u]) can be defined as
follows:

F(x, [u]) =
∫

dy δ(x − y)(uuy − νuyy). (10)

Its variational derivative is then equal to

δF(x, [u])

δu(y)
= δ′(x − y)u− νδ′′(x − y) (11)

and the trace term formally becomes

Tr
δF
δu
=
∫

dt dx
δF(x, [u])

δu(x)
= δ′(0)

∫
dt dx u− νδ′′(0)

∫
dt dx. (12)

Here, the first term vanishes for symmetry reasons and the second term does not depend
on u and can be absorbed by the normalization factor in the path integral. Hence, for
the Burgers equation the Jacobian of the force-to-velocity transformation is equal to some
irrelevant constant.

So, the generating functional of the velocity correlation functions

〈F [λ]〉 =
〈
exp

∫
dx λ(x)u(x,0)

〉 ∫
dx λ(x) = 0 (13)

can be represented by the path integral

〈F [λ]〉 =
∫
DµDuF [λ] exp(−S[u,µ]) (14)

where the action of the effective field theory is equal to

S[u,µ] = −i
∫

dt dx µ(ut + uux − νuxx)+ 1

2

∫
dt dx dx ′µ(x, t)κ(x − x ′)µ(x ′, t)

(15)

and time integration runs over the interval(ti , tf ). For the sake of simplicity, we will
consider the time interval(−∞, 0) although the following does not depend on the particular
choice.κ(x) is supposed to be a slowly varying even function with the expansion

κ(x) = κ(0)− κ0

2
x2 |x| �

√
κ(0)

κ0
≡ l (16)

and quickly turns to zero when|x| � l. The intervall characterizes the correlation length
of the random force and we only study velocity correlation functions within this interval.

2. Symmetries of the Burgers equation

We start our consideration with a quite natural question: what is the most general
transformation leaving invariant the Burgers equation driven by an external force,
equation (1), or, in other words, given two functionsu(x, t) and f (x, t) satisfying the
Burgers equation, what is the most general transformation that produces another pair of
functions satisfying the same equation?
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Making use of the methods of Lie group analysis of differential equations [11] it is
possible to prove that all such transformations form the symmetry group which consists of
the two infinite subgroups, generalized Galilean transformations (G),

ť = t (17a)

x̌ = x + a(t) (17b)

ǔ = u+ a′(t) (17c)

f̌ = f + a′′(t) (17d)

and time reparametrizations (L),

t̃ = b(t) (18a)

x̃ = x
√
b′(t) (18b)

ũ =
(
u+ x

2

b′′(t)
b′(t)

)/√
b′(t) (18c)

f̃ =
(
f + x

2
{b(t), t}

)/√
b′(t)3 (18d)

where a(t) is an arbitrary function,b(t) maps the time interval(ti , tf ) onto itself and
b′(t) > 0. The braces

{b(t), t} = b′′′

b′
− 3

2

(
b′′

b′

)2

(19)

are known in the theory of complex functions as the ‘Schwarzian derivative’.
Symmetry transformations (17) and (18), although not depending explicitly on the

viscosity ν, are stipulated by the structure of the diffusion term. In particular, these
transformations leave also invariant, along with the Burgers equation itself, the following
relation,

(dx − udt)2 ∼ dt (20)

which coincides (up to convective term,udt) with a similar relation for a diffusion process.
The symmetry groups corresponding to the transformations (17) and (18) are generated

by the infinitesimal operators

G(α(t)) = α ∂
∂x
+ α′ ∂

∂u
+ α′′ ∂

∂f
(21a)

L(β(t)) = β ∂
∂t
+ 1

2
β ′x

∂

∂x
+ 1

2
(β ′′x − β ′u) ∂

∂u
+ 1

2
(β ′′′x − 3β ′′f )

∂

∂f
(21b)

which, in the basis

Gr = G(tr+1/2) Ln = L(tn+1) (22)

form a Lie algebra with the commutation relations

[Gr,Gs ] = 0 (23a)

[Ln,Gs ] = (s − n/2)Gn+s (23b)

[Ln,Lm] = (m− n)Ln+m (23c)

wheren,m are integers andr, s are half-integers.
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3. Action transformation laws

Up until now, we have not been concerned about the probability distribution of the pumping
force. However, if the forcef (x, t) is a Gaussian random function, then its probability
measure is not invariant under the symmetry transformations. It is easy to check directly
that the action (15) which in fact defines such a probability measure changes under the
generalized Galilean transformations as

Š[ǔ, µ̌] = S[u,µ] − i
∫

dt dx µ(x, t)a′′(t) (24)

and under the time reparametrizations as

S̃[ũ, µ̃]= −i
∫

dt dxµ(ut + uux − νuxx)+ 1

2

∫
dt dx dx ′ b′2µ(x, t)κ(

√
b′(x − x ′))µ(x ′, t)

− i

2

∫
dt dx xµ(x, t){b(t), t}. (25)

Hence, we come to the conclusion that it is the Gaussian distribution of the pumping force
which breaks down the infinite symmetry group of the Burgers equation (1).

The action is still invariant under the finite subgroup which consists of spatial translations
generated by the infinitesimal operatorG−1/2, Galilean transformations generated by the
operatorG1/2, and time translations with the generatorL−1. According to the Noether
theorem [11] there are three conservation laws corresponding to the three-parameter
subgroup of variational symmetries, the momentum conservation

P = −i
∫

dx µux (26)

the conservation of the centre-of-mass motion

M = i
∫

dx µ+ tP (27)

and the energy conservation

E = i
∫

dx µut + L (28)

whereL is the LagrangianS = ∫ dt L.

4. The Faddeev–Popov method

If the action were invariant with respect to the infinite symmetry group, we could employ
the Faddeev–Popov method to eliminate the corresponding degrees of freedom [10]. As we
will see later, in our case the same method separates the degrees of freedom of the symmetry
group transformations and leads finally to the exactly solvable quantum mechanics for the
separated modes. The Faddeev–Popov method consists of three steps. At first, considering
the field theory

Z =
∫
DA exp(−S[A]) (29)

with the action,S[A], invariant under the groupG of gauge transformationsS[Ag] = S[A],
we define the equationf (A) = 0 which fixes uniquely the gauge degrees of freedom, i.e.
the equationf (Ag) = 0 should provide the unique solution for the group elementg for an
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arbitrary chosen field configurationA. Then, we define the functional JacobianJG [A] by
the condition

JG [A]
∫
Dg δ(f (Ag)) = 1 (30)

whereJG [A] = det‖δf (Ag)/δg‖, and integration runs over the volume of the groupG. It is
clear that the functionalJG [A] is invariant by construction under the gauge transformations,
JG [Ag] = JG [A]. So, we can calculate the Jacobian only for the identity element of the
group. Finally, if we insert the identity (30) into the functional integral (29) and shift the
variablesAg → A, we separate the degrees of freedom corresponding to the group volume

Z =
∫
DAJG [A]δ(f (A)) exp(−S[A])

∫
Dg. (31)

Now, we can apply the same method to integrate over the volume of the groups of
generalized Galilean transformations and time reparametrizations.

5. Integration over the volume of the groupG

The gauge fixing equation in this case isu(0, t) = 0, and we consider the identity

JG[u]
∫
Da (t)δ(a′ − u(a, t)) = 1 (32)

which is the definition of the JacobianJG[u], integration runs over the volume of the group
G. The explicit form of the Jacobian,JG, is given by the functional determinant

JG[u] = det

∥∥∥∥∂t − δu(a(t), t)δa(t)

∥∥∥∥. (33)

For the identity element of the group,a(t) = 0, this expression takes the form

JG[u] = det‖∂t − ux(0, t)‖. (34)

To preserve the causality of the Langevin equation after the generalized Galilean
transformation we should propagate the operator, whose determinant we are calculating,
backward in time. Standard calculation [10] then gives the result

JG[u] = exp

(
(1− θ(0))

∫
dt ux(0, t)

)
(35)

involving the same ill defined quantityθ(0) that appeared in the derivation of the Martin–
Siggia–Rose field theory, equation (9). As we will see later, the choiceθ(0) = 1/2 is
self-consistent in the sense that it ensures finally the existence of the steady state. Actually,
the value ofθ(0) plays exactly the same role as theB-anomalyterm in the Polyakov operator
product expansion.

Now, we insert the identity (32) into the functional integral (13). Then, after the properly
defined generalized Galilean transformation (17), we turn the argument of theδ-function
into the gauge fixing term, i.e. turn it into the equation of the surface in the functional
space that intersects the orbits of the symmetry group only once. Finally, we get for the
generating functional of the velocity correlation functions (13)

〈F [λ]〉 =
∫
Dµ

∫
Da exp(−SG[a, µ])

∫
Du δ(u(0))JGF [λ] exp(−S[u,µ]) (36)
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where we have used the condition
∫

dx λ(x) = 0, which ensures the invariance of the
functionalF [λ] under the generalized Galilean transformations,

SG[a, µ] = −i
∫

dt dx µ(x, t)a′′(t) (37)

is the effective action of the corresponding modes. In fact, all these modes can be integrated
out, leading to the additional constraint∫

Da(t) exp(−SG[a, µ]) = δ
(
∂2
t

∫
dx µ

)
. (38)

From this it follows that the zero moment of the auxiliary fieldµ is just a linear function
of time

π0 =
∫

dx µ = i(P t −M) (39)

whereP andM are the integrals of motion (26) and (27). In the frame of reference moving
together with the centre-of-mass of the Burgers fluid both of the integrals are equal to zero
andπ0 ≡ 0.

The integration over the volume of the group of generalized Galilean transformations
has first been proposed [5, 12] to justify the stability of the saddle-point approximation in
the path integral.

6. Integration over the volume of the groupL

The gauge fixing equation isu(x0, t) = 0, wherex0 6= 0, and we consider the identity

JL[u]
∫
Db(t) δ

(
x0

2

b′′

b′
− u(x0

√
b′, b)
√
b′
)
= 1. (40)

The explicit expression for the JacobianJL is

JL[u] = det

∥∥∥∥ δ

δb(t)

(
x0

2

b′′

b′
− u(x0

√
b′, b)
√
b′
)∥∥∥∥ (41)

which in the new variables

ln
√
b′(t) = σ(b) b′′(t)

2b′(t)2
= σ ′(b) (42)

can be rewritten as

JL[u] = det

∥∥∥∥δ{x0σ
′ − u(x0 eσ , b)e−σ } e2σ

δσ

∥∥∥∥ det

∥∥∥∥δσδb
∥∥∥∥. (43)

Again, due to invariance of the Jacobian under the group of time reparametrizations it can
be computed only for the identity element of the group

JL[u] = det‖∂t − ux(x0, t)‖ (44)

where the unessential constant coefficient that does not depend onu is omitted and the
constraintu(x0, t) = 0 is used. Calculating the determinant along the lines indicated above,
we get

JL[u] = exp

(
1

2

∫
dt ux(x0, t)

)
. (45)
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Let us now insert the identity (40) into the functional integral (36). Then, after a properly
defined time reparametrization, the generating functional of the velocity correlation functions
is converted into

〈F [λ]〉 =
∫ Dµ
Dπ0
Du δ(u(0))δ(u(x0))JGJLF [λ] exp(−S0)

×
∫
Db exp

{
−SL[b, π ] + b′′(0)

2b′(0)2

∫
dx xλ(x)

}
(46)

whereπ(t) = ∫ dx xµ(x, t) and

S0[u,µ] = −i
∫

dt dx µ(ut + uux − νuxx) (47)

is the action of the modes remaining. Due to the special choice of the noise covariance
equation (16), it does not depend on the pumping force.

In the limit of the small but non-zero viscosity,ν → +0, we can also separate the
integration overπ . The desired effective action of the separated modesb(t) andπ(t),

SL[b, π ] = − i

2

∫
dt π(t){b(t), t} − 1

2

∫
dt
b′′(t)
2b′(t)

+ κ0

2

∫
dt b′(t)3π(t)2 (48)

then follows from the action transformation law under the time reparametrizations (25), and
the analogous transformation law for the Jacobian

J̃G[ũ] = JG[u] exp

(
1

2

∫
dt
b′′

2b′

)
. (49)

Separating the modes, we obtain another ambiguous parameter. Namely, we can
choose an arbitrary normalization factor,Z0, for the partition function of the modes of
the symmetry group transformations and the inverse, 1/Z0, for the partition function of the
modes remaining. This parameter plays exactly the same role as theA-anomalyterm in
Polyakov theory. Again, the choiceZ0 = 1 is self-consistent and ensures the existence of
the steady state (see also [13]).

It should be stressed at this point that the gauge fixing termδ(u(x0)) works properly
only if the degrees of freedom associated with the fielda(t) have already been integrated
out, i.e. we cannot change the order and integrate first over the volume of the groupL.

7. Equivalent quantum mechanics

The action (48) is equivalent to the Polyakov exactly solvable quantum mechanics. To make
it obvious, let us pass from the variablest , b(t), andπ(t) to the new ones

b = b(t) q(b) = b′′(t)
2b′(t)2

p(b) = b′(t)π(t) (50)

and finally obtain

SL[q, p] =
∫

db

{
−ip(q ′ + q2)− 3

2
q + κ0

2
p2

}
(51)

where the additional term,−q, comes from the JacobianDπ Db/DpDq. This action
corresponds to the quantum mechanics (in imaginary time) with the Hamiltonian [10]

H = κ0

2

(
p− iq2

κ0

)2

+ q4

2κ0
− 3q

2
. (52)
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Following Polyakov [4], we can find the zero energy eigenfunction of this Hamiltonian and
finally calculate the generating functional of the velocity correlation functions,

〈F [λ]〉 = exp

{√
2κ0

3

[∫
dx xλ(x)

]3/2
}
. (53)

In conclusion we would like to mention that the method proposed in this letter seems
to have a wider applicability than just to the Burgers equation considered. Any stochastic
equation of Langevin type that possesses an infinite symmetry group can be treated in this
way.
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